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Abstract

An adaptive landscape concept outlined by G.G. Simpson constitutes the major conceptual bridge between the
fields of micro- and macroevolutionary study. Despite some important theoretical extensions since 1944, this con-
ceptual bridge has been ignored in many empirical studies. In this article, we review the status of theoretical work
and emphasize the importance of models for peak movement. Although much theoretical work has been devoted to
evolution on stationary, unchanging landscapes, an important new development is a focus on the evolution of the
landscape itself. We also sketch an agenda of empirical issues that is inspired by theoretical developments.

Introduction

Is the ‘modern synthesis’ incomplete? At the cen-
ter of disenchantments with the neo-Darwinian the-
ory of evolution is the connection between micro-
and macroevolution. The term microevolution refers
to the processes that lead to phenotypic diversific-
ation among arrays of conspecific geographic races
or closely related species. Macroevolution, on the
other hand, covers processes responsible for the di-
vergence among genera or higher taxa. We favor
the view that neo-Darwinian theory can account for
both micro- and macroevolutionary patterns (Lande,
1980a; Charlesworth, Lande & Slatkin, 1982). Nev-
ertheless, despite our optimism, we recognize that
disenchantment is easy to find in the literature of evol-
utionary biology. The main complaints fall into two
broad categories: (1) claims that microevolutionary
processes cannot logically be extrapolated to explain
macroevolutionary pattern (Stanley, 1979; Eldredge
& Cracraft, 1980), and (2) the idea that important
pattern-producing processes operate above the level
of populations (e.g., species selection; Rensch, 1959;
Vrba, 1983). The conceptual chasm between micro-
evolutionary processes (inheritance, selection, drift)

and macroevolutionary patterns appears to some au-
thors to be deep, wide and unbridgeable. Remarkably,
a conceptual bridge was outlined more than 50 years
ago by Simpson (1944, 1953) but is neglected by many
evolutionary biologists today.

Simpson (1944) boldly used an adaptive land-
scape to synthesize genetical and paleontological
approaches to evolution. In Simpson’s conceptualiz-
ation a two-dimensional space represents the possible
combinations of two phenotypic characters (structural
variants). Elevation contours on this space represent
population fitness (adaptiveness). Using this pheno-
typic landscape, Simpson illustrated the concepts of
phenotypic variation, selection, immediate responses
to selection, long-term evolutionary trends, speciation,
and adaptive radiation. No visualization before or
since 1944 has been so successful in integrating the
major issues and themes in phenotypic evolution.

Topographic simplicity and peak movement are
notable features of Simpson’s landscapes. He usually
portrayed just one or two adaptive peaks. Peak move-
ment is a second important theme. Simpson modeled
the tempo and mode of evolution with various patterns
of peak bifurcation and movement. In Simpson’s con-
ceptualization the population evolves in relation to a
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changing landscape. The model is not one of evolution
on a complex but stationary landscape. In recent years,
the theoretical literature has explored the issue of peak
movement. This change in focus from stationary to
evolving landscapes is so profound that it is fair to
call it a paradigm shift, yet it has escaped the notice
of many evolutionary biologists. We shall return to the
themes of topographic simplicity and peak movement
later in our discussion.

The landscape under discussion should not be con-
fused with certain other landscape concepts in the
literature of evolutionary biology. The landscape that
Simpson used, and which we will explore, is a space
of phenotypic characters (Lande, 1976a, 1979). El-
evation on this space reflects population-level fitness
(adaptation). This phenotypic landscape is a direct
descendant of Wright’s adaptive landscape (Wright,
1931, 1932, 1945), except that his landscape is a space
of gene frequencies (Wright, 1932, 1982; Provine,
1986). In Wright’s conceptualization, the landscape
is complex (due to epistasis in fitness) and largely
stationary. Movement on the Wrightian landscape rep-
resents evolutionary change in gene frequencies rather
than phenotypic evolution per se. Other landscapes are
still more distant to the one under discussion. Rice
(1998) uses a landscape to model the evolution of
phenotypic plasticity in which elevation represents a
character and the axes reflect underlying factors. Wad-
dington’s (1957) epigenetic landscape is a space of
abstract variables that is used to describe the modal
developmental tendency and major deviations from it.

In evolutionary biology today Simpson’s landscape
is not routinely used to motivate empirical work, even
though its power has been confirmed and extended by
theoretical studies. The theoretical developments are
relatively recent, tracing back to Lande (1976a, 1979),
and are often couched in the language of multivariate
calculus and linear algebra. Simpson’s landscape lives
and flourishes in these theoretical papers, but rarely
is illustrated. Consequently, the idea that Simpson’s
landscape is the major conceptual bridge between the
fields of micro- and macroevolution is unappreciated
by many evolutionary biologists. The goal of this art-
icle is to give an overview of theoretical developments
in the field of phenotypic evolution, especially those
that can be visualized with Simpson’s landscape. Our
thesis is that these results and visualizations could and
should guide empirical work in a wide variety of dis-
ciplines. Our survey also highlights some directions
that need theoretical exploration. The bridge is still
under construction.

Some recent works are important companions to
our discussion. Hansen and Martins (1996), build-
ing on the work of Felsenstein (1973, 1985), have
pointed out that the fields of systematics, evolutionary
genetics, and comparative biology rest on a common
set of equations relating evolutionary pattern (trait
variance and covariance among taxa) to process (muta-
tion, selection, drift). Those unifying equations are
in turn based on models that relate microevolution
to macroevolution. In this review we give a land-
scape visualization of the various process models that
are central to Hansen and Martins’ (1996) discussion.
Schluter (2000) has used Simpson—Lande landscapes
to illustrate the concept of adaptive radiation and to
survey the growing empirical literature. We will rely
on Schluter’s (2000) treatment of adaptive radiations,
while extending his discussion of landscapes and how
they can be used. To provide a connection to the
theoretical literature, while keeping the text free of
mathematical notation, we will indicate equations by
number in parenthesis. The corresponding mathemat-
ical expressions and their attributions are given in the
Appendix.

Current conceptualizations of the
adaptive landscape

Overview

The adaptive landscape for continuously distributed,
phenotypic characters is a surface that relates average
fitness to average character values. Although only the
one character case is usually portrayed in textbooks,
the landscape must be visualized in at least two di-
mensions to appreciate fully the key concepts. The
landscape is more than a theoretical construct — crucial
features of this surface can be determined empirically.

In this section, and the ones to follow, we will use
a landscape concept in which selection favors an in-
termediate optimum. There are many reasons for this
choice for selection, and chief among them is its firm
empirical foundation. This form of selection (some-
times called stabilizing or centrifugal selection) was
documented in some of the earliest empirical studies
of phenotypic selection (Karn & Penrose, 1951) and
has been found in many subsequent studies (Endler,
1986; Kingsolver et al., 2001). Stabilizing selection
can produce a persistent equilibrium, a result that
appeals to many naturalists, in contrast to linear se-
lection regimes under which populations are perpetu-
ally subjected to directional change. Long-maintained



stabilizing selection can explain such diverse phenom-
ena as character canalization, geographic variation,
and transgressive segregation in second-generation hy-
brids resulting from a wide cross (i.e., the appearance
of variants outside the range of the parental popu-
lations) (Mather, 1941, 1943; Schmalhausen, 1949;
Wright, 1968; Rieseberg, Archer & Wayne 1999). Fur-
thermore, directional selection can be accommodated
in theoretical work by simply shifting the selective op-
timum away from the character mean (Lande, 1976a).
Although we have chosen to illustrate the landscape
concept with stabilizing selection, other modes of se-
lection are feasible and the sections that follow could
be revisited using those alternative selection modes.
In particular, a recent review of the selection literat-
ure discovered that instances of disruptive selection
were as common as stabilizing selection (Kingsolver
et al., 2001), a result that challenges our emphasis
on stabilizing selection. Univariate studies of selec-
tion predominated in that review, so the jury is still
out on whether the adaptive landscape is commonly
hill, pit, saddle or ridge-shaped (Phillips & Arnold,
1989).

The adaptive landscape for a single character: the
march of the frequency distribution

The adaptive landscape for a single character under
stabilizing selection can be represented by a dome-
shaped curve. If the mean of the character is situated
some distance from the apex (optimum) of the curve,
the population experiences directional selection that
will tend to shift the mean toward the optimum if the
character is heritable. If heritability is constant, the
amount of change across generations is proportional
to the distance to the optimum (Lande, 1976a). Evol-
ution towards a stationary optimum is rapid at first,
decelerates as the mean approaches the optimum, and
then ceases entirely when the mean coincides with the
optimum (Figure 1), (1). In other words, the frequency
distribution marches until it lies under the peak of the
landscape. This march corresponds to a progressive in-
crease in average fitness, ceasing when the population
achieves a fitness maximum directly under the peak
(Lande, 1979), (2). In ecological terms, the movement
of the optimum away from the character mean might
correspond to a change in climate, resources, predators
or change in any other set of conditions that induces
directional selection. The movement might happen in-
stantaneously and then cease. An ecologically more
plausible circumstance is that the peak movement con-
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Figure 1. An adaptive landscape for a single character under sta-
bilizing selection (a). The natural logarithm of mean population
fitness is shown as a function of phenotypic mean. Evolution of
the distribution of phenotypic values in response to the adaptive
landscape (b).

tinues over a period of generations so that for some
period of time the population chases an ever-moving
optimum. Thus, during the Pleistocene, most periods
of, say, a hundred generations might have been char-
acterized by progressive change in temperature that in
turn induced continued change in a host of ecological
variables affecting fitness. For any particular charac-
ter this progressive change translates into an optimum
that moves steadily away from the mean in the same
direction. Colonization of a new environment can also
create a situation in which the trait mean is some dis-
tance from the optimum with resulting rapid evolution.
Colonization of new hosts, new spawning habitats and
environments with new predators are examples (Via,
1991; Reznick et al., 1997; Feder, 1998; Hendry et al.,
2000).

A stationary adaptive landscape for two characters:
the simplest case of multivariate evolution

The adaptive landscape for two characters under sta-
bilizing selection can be represented by a hill-shaped
topography. The optimum is represented by the crest
of the hill. If the bivariate character mean is located
some distance from the optimum, the population ex-
periences directional as well as stabilizing selection.
The strength of directional selection corresponds to
the direction of steepest uphill slope from the char-
acter mean on the adaptive landscape (Lande, 1979),
(3). This vector can be resolved into two compon-
ents or selection gradients, corresponding to the two
character dimensions (Figure 2). A steeply sloping
hill represents strong directional selection, whereas a
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Figure 2. An adaptive landscape for two characters under stabil-
izing selection with no correlational selection. The vectors show
the forces of directional selection that act on a population whose
bivariate mean is at the position of the small dot (at the base of the
vectors). 01 and 6 denote the position of the optima for the two
characters.

weakly sloping hill corresponds to weak directional
selection. The intensity of stabilizing selection cor-
responds to the curvature of the landscape, evaluated
at the character mean (Lande & Arnold, 1983), (4).
Landscape curvature has three aspects. The first two
aspects are stabilizing selection corresponding to the
two character dimensions and can be thought of as
curvature of the hill, viewed in slices parallel to the
two character axes. Strong stabilizing selection corres-
ponds to strong curvature, weak stabilizing selection
corresponds to weak curvature. The third aspect of
curvature concerns the orientation of the hill, and is
called correlational selection. If the long axis of the
hill is parallel to one of the character axes, there is no
correlational selection. A hill with an upward-tilting
axis is said to impose positive correlational selection
(Figure 3). A hill with a downward-tilting axis is said
to impose negative correlational selection. These three
aspects of curvature can be represented by a matrix,
the so-called y-matrix (5), (Lande & Arnold, 1983;
Arnold, 1992).

A general principle of evolution on the adaptive
landscape is that the population mean tends to move
uphill (Lande, 1979), (2). If the landscape is of a
simple type shown in Figure 3, with one adaptive peak,
this principle means that the population mean will
tend to evolve towards equilibrium on that peak, al-
though genetic drift can cause departures from upward
movement and equilibrium. Additional exceptions to
this fitness maximization principle will be discussed
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Figure 3. An adaptive landscape for two characters under stabil-
izing and positive correlational selection. Same conventions as in
Figure 2. The long and short axes of the landscape are the prin-
cipal components (eigenvectors) corresponding to the two largest
eigenvalues of the landscape.

in a later section. Although the population tends to
evolve uphill under frequency-independent selection,
the mean generally does not evolve in the direction of
greatest improvement in average fitness, the direction
of which is given by the directional selection gradi-
ents. Instead the population will take a curved path
that deviates from this direction of greatest improve-
ment (Lande, 1979, 1980a). Such curved paths arise
from unequal genetic variances (i.e., some characters
having greater genetic variance than others) and from
genetic covariance. These genetic parameters affect
both the rate and direction of evolution and are repres-
ented by a variance—covariance matrix known as the
G-matrix.

The crucial genetic parameters that affect rate and
direction of evolution can be visualized using a set
of axes called principal components (5). A popula-
tion capable of rapid evolution will have abundant
genetic variation in both principal components (5).
We can represent this abundance with an ellipse that
is broad in both axes (Figure 4(a)). The width of
the ellipse in slices through its center, parallel to
the two character axes, is proportional to the genetic
variances that exist in those characters. The greater
the genetic variance for a character, the faster it can
evolve. The ellipse also has an orientation with re-
spect to the two character axes. This orientation can
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Figure 4. Bivariate distributions of breeding (additive genetic) val-
ues representing different patterns of genetic variance and covari-
ance. (a) Large genetic variance in trait 1, small genetic variance in
trait 2 and no genetic covariance. (b) Positive genetic covariance. (c)
Negative genetic covariance.

be represented by the long axis of the ellipse (i.e., the
eigenvector corresponding to the largest eigenvalue of
the G-matrix). When the long axis is parallel to one
of the character axes (Figure 4(a)), there is no genetic
covariance between the two characters. An upward-
tilting axis corresponds to positive genetic covariance
(Figure 4(b)); a downward-tilting axis corresponds
to negative genetic covariance (Figure 4(c)). The tilt
of the genetic variation axis (genetic covariance) can
greatly affect the population’s response to the adaptive
landscape.

One way of appreciating the effect of genetic cov-
ariance is to ask, ‘under what conditions will the pop-
ulation evolve in the same direction as the direction
specified by the directional selection gradients?’ In
other words, under what conditions will the population
evolve in a straight line rather than on a curved path
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Figure 5. Evolution on an adaptive landscape depends on the align-
ment of the axes (principal components) of genetic variation (shaded
ellipses) with the axes (principal components) of the adaptive land-
scape. Evolution follows straight trajectories when major (lower
left) or minor (lower right) axes are aligned. In general, axes are
out of alignment (upper left) and evolution follows a curved traject-
ory. The small ellipses around each of the three population means
represent genetic variation around each mean (the eigenvectors and
eigenvalues of the G-matrix) and hence are on a different scale of
measurement.

that deviates from the direction of greatest improve-
ment in fitness? The answer is that the population
will evolve in a straight line when an axis of genetic
variation is aligned with an axis of the landscape and
hence with the selection gradient. Evolution will be
rapid when the major axis (first principal compon-
ent) is aligned (Figure 5(a)) and slow when the minor
axis (second principal component) is aligned (Figure
5(b)). The population will tend to evolve on a curved
path whenever the axes of genetic variation and the
landscape are out of alignment (Figure 5(c)).

The adaptive landscape in more than two character
dimensions

No additional concepts are needed to specify an adapt-
ive landscape for three or more characters, although
the landscape does become progressively more diffi-
cult to visualize. The landscape for three characters
under stabilizing selection, for example, can be visual-
ized as a nested series of spheres or ellipsoids (Phillips
& Arnold, 1989).
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Models for the evolution of the optimum:
macroevolution pattern from microevolutionary
process

Overview

Models for the movement of the peak of the adaptive
landscape can be used to describe changing ecological
opportunity or temporal change in the environment.
The most successful models of this kind make pre-
dictions about macroevolutionary pattern from the
microevolutionary processes of selection, drift and
inheritance. Because these models characterize ex-
pected evolutionary patterns in statistical terms, they
can be used to test alternative visions of the adaptive
landscape. We will review these characterizations and
outline progress in using them to construct tests for the
causes of evolutionary pattern.

The following discussions of models follow a com-
mon format.

(1) A microevolutionary process model is specified.
The specification corresponds to assumptions
about the adaptive landscape and inheritance.

(2) Using this model, we present expressions for the
expected variances and covariances among popula-
tions or other taxa for a set of traits. This approach
assumes a phylogeny for the populations. The
phylogeny that makes the models most tractable
is a star, in which all populations diverge simul-
taneously from one ancestor and are viewed after
some number of generations.

(3) Alternative models for process are distinguished
by comparing their predictions about pattern
(among-population variances and covariances).

To test alternative process with real data, the as-
sumption of a star phylogeny can be relaxed using
an estimate of phylogeny with branch lengths that
are proportional to elapsed time. Using those branch
lengths, the expected pattern across the whole phylo-
geny can be calculated (Hansen & Martins, 1996;
Martins & Hansen, 1996; Hansen, 1997).

Evolution on static landscapes

The following models consider evolution on land-
scapes that do not change over time. While less real-
istic than other models in which the adaptive landscape
itself evolves, these models provide important null hy-
potheses against which to test empirical observations.

Multivariate drift: evolution on a flat landscape

The default topography for the adaptive landscape is
a flat and level surface, the drift landscape. Selec-
tion does not affect the evolution of the population
mean, which instead evolves in a trajectory that can
be described by Brownian movement. Because of the
simplicity of drift, we can predict the average evol-
utionary outcome. That outcome depends on elapsed
time, effective population size, and the matrix of ge-
netic variances and covariances (the G-matrix; Lande,
1976a, 1979). Imagine a set of replicate populations
derived instantaneously from the same ancestral pop-
ulation and diverging under drift alone. After any
number of generations the expected character mean
of all these descendant populations will be the same
as the original, ancestral mean. The expectation is
that drift will not change the character mean. Even
though the average population should have the same
mean as its ancestor, divergence among populations
in mean can be appreciable and will show a charac-
teristic pattern. The variance—covariance matrix for
the means of descendant populations will be propor-
tional to the G-matrix (Figure 6). Variance among
populations will also be proportional to the num-
ber of elapsed generations and inversely proportional
to average effective population size (6). Thus, on a
drift landscape, the G-matrix and effective population
size encapsulate, respectively, the microevolutionary
processes of inheritance and drift. The equation (6)

Zi
Figure 6. Bivariate drift on a flat adaptive landscape. The small
ellipse at the center represents the G-matrix of the ancestral popula-
tion. The large, outer ellipse represents 95% confidence ellipse for
the means of replicate, descendant populations. Solid curved lines
show representative evolutionary trajectories. Other conventions as
in Figure 5.



relating these processes to divergence in means con-
stitutes the bridge between microevolutionary process
and macroevolutionary pattern.

The evolutionary trajectory of a small population
on a drift landscape is especially chaotic. The small
size of the population causes sampling effects that
induce random changes in genetic means, variances
and covariances. Phillips, Whitlock and Fowler (2001)
provide a dramatic example of G-matrices varying
under drift.

Other kinds of evolution on featureless landscapes

The simplest departure from the drift landscape is a
surface that is flat but tilted in one or more character
dimensions. A population on such a landscape exper-
iences only directional selection. To see the predicted
connection between microevolution and macroevolu-
tion, imagine the same scenario as before: a set of
large descendant populations derived at the same in-
stant from the same ancestral population. All descend-
ants experience the same average tilt to their adaptive
landscape, but the tilt in each population fluctuates.
Those fluctuations may covary among populations,
but they are independent of trait means within pop-
ulations. If we take a snapshot of these populations
after some number of generations (¢), the variance—
covariance matrix describing their means will be pro-
portional to the product of the G-matrix, variation in
landscape tilt, and the number of elapsed generations
(Felsenstein, 1988; Zeng, 1988), (7). If the descend-
ant populations are small in size, genetic drift of the
trait mean cannot be ignored. In this case, the variance
among population means after ¢ generations has two
sources: one due to fluctuation in selection, the other
due to sampling errors arising from finite population
size (Hansen & Martins, 1996), (8). As in the case
of drift, these simple models of pure directional se-
lection yield equations that bridge the chasm between
microevolution and macroevolution.

The goal of these simplified models is not to
provide a description of how macroevolutionary pat-
terns are actually generated in the real world. The
significance of the drift and directional selection mod-
els is that they provide benchmarks against which we
can test for the signature of selection in nature. If
we can refute the predictions of the drift model, we
have good evidence that some form of selection is
producing pattern. Thus, Lynch (1990) was able to
reject a drift model by showing that there was too
little variance among species in morphological traits.
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If, at the next step, we can reject a model of pure
directional selection, we have evidence that more com-
plicated forms of selection are responsible for evol-
utionary pattern. Equations derived from the models
not only bridge between micro- and macroevolution,
they provide tests for progressively more complicated
kinds of selection. Different kinds of selection are
recognized by their characteristic, pattern-producing
features. It is important to realize that the tests just
described depend on the assumption that the G-matrix
is homogeneous across populations and species, an
assumption that we will examine in a later section.

Evolution on a curved but unchanging landscape

An attractive feature of curved landscapes is that they
allow the possibility of local equilibria. In other words,
each population can remain under selection and yet
evolve towards a stable outcome, unless the adaptive
peak is constantly in motion. Because those stable
outcomes can vary in space and time, they map onto
observations of geographic variation (e.g., ecotypic
variation).

Lande (1976a, 1979) described a simple model
of this kind in which the adaptive landscape consists
of a single adaptive peak, Gaussian in shape. The
location of the peak and the curvature of the land-
scape are constant through time. Lande’s results are
general in the sense that the effects of finite pop-
ulation size are included, but they are approximate
because the G-matrix is assumed to be constant. The
mean of a large population tends to evolve towards the
peak and will eventually reach it, unless conditions
change. Drift arising from finite population size causes
the mean to deviate from the optimum. Departure
from the optimum generates directional selection to-
wards the optimum; the greater the departure, the
stronger the selection. Stabilizing selection generates
arestraining force that can be likened to a rubber band,
pulling the mean towards the optimum (Hansen &
Martins, 1996). For a single character, this restrain-
ing force is proportional to the product of genetic
variance and the curvature of the landscape (9). The
more genetic variance and the greater the curvature
of the peak, the more the mean is pulled towards the
optimum. The prediction of this model is that the vari-
ation among descendant populations will be much less
than under pure drift. Because among population vari-
ation decays as an exponential function of time and the
restraining force, with even weak stabilizing selection
there may be no appreciable variation.
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Adaptive landscapes with two stationary peaks
(Felsenstein, 1979) have been used to model speci-
ation and punctuated equilibria. These models are the
phenotypic analog of Wright’s shifting balance theory
(Wright, 1932, 1940) in the sense that a population
can become trapped on a peak that is lower than an
adjacent peak. The models are commonly called ‘peak
shift” models, but the peaks do not move. Instead, the
population mean shifts from one peak to the other.
Peak shift models incorporate random genetic drift as
a mechanism that enables the population to escape
from a local peak. Lande’s (1986) review summarizes
results from several models, some of which are sur-
prising. Under a wide range of conditions, populations
show a pattern of relative stasis in which the pheno-
typic mean erratically drifts in the immediate vicinity
of one peak for a long period of time. The average
length of this period of relative stasis (the expected
time until the population shifts to the other peak) is
long if the population is large, the original peak is
high, and the valley between the peaks is deep (11).
Surprisingly, the expected time until a shift is almost
independent of the distance between the two peaks. If
we focus on those rare events in which the mean shifts
to the second peak, we find that the transit down to the
valley — against the force of directional selection — is
just as fast as the transit back up to an adaptive peak.
This unexpected result is a consequence of sampling
rare events in which peak shifts occur. Only especially
rapid instances of drift are included in the sample, and
in these the speed of downhill transit is just as rapid as
the episode of uphill transit. Despite their simplicity,
peak shift models produce an evolutionary tempo in
which long periods of relative stasis are punctuated
by rapid evolutionary transitions. Lande (1986) and
other authors of peak shift models have argued per-
suasively that the conditions underlying these models
are more plausible than the set of assumptions in-
voked by Gould and Eldredge (1977). Models with
two stationary peaks have also been used to explore
the interaction between selection and gene flow. In
such models, gene flow from an adjacent population
can cause a population to equilibrate downslope from
its adaptive peak (Garcia-Ramos & Kirkpatrick, 1997,
Hendry, Day & Taylor, 2001).

Evolution of curved landscapes

In all the preceding models, we imagined that the ad-
aptive landscape was invariant through time. We now
consider the possibility that the landscape itself can

change. One important kind of change is caused by
density-dependent selection, which can cause a peak
to flatten as the population evolves towards it (Brown
& Vincent, 1992; Schluter, 2000). In this section, how-
ever, we will focus on change that involves the position
of the optimum. A simple kind of landscape evolution
is for the position of the optimum to change while the
curvature and orientation of the surface remains con-
stant. We will discuss five models for peak movement
that all share the characteristic that peak shape and
orientation remain constant.

Random movement

The position of the optimum might change stochastic-
ally. One tractable model assumes that the optimum
shows erratic movement (Figure 7(a)), modeled as a
stationary time series (Slatkin & Lande, 1976; Bull,
1987; Felsenstein, 1988; Charlesworth, 1993a, b;
Lynch & Lande, 1993; Hansen & Martins, 1996;
Lande & Shannon, 1996). The process is stationary
in the sense that the parameters describing the time
series do not change through time. The peak fluctu-
ations may be independent from one generation to the
next or autocorrelated. In such models the evolution-
ary response of the mean to the moving optimum is an
increasing function of the magnitude of the movement,
the amount of genetic variance in the direction of the
shift and the curvature of the adaptive landscape (12).
A set of replicate descendant populations will show
trait variation that is proportional to the variance in
peak movement, but that variation will decay through
time as a negative exponential function (Hansen &
Martins, 1996), (13). A challenge in such models is
to relate the matrix that controls random movement of
the peak to ecological processes. Although the connec-
tion is clear in particular cases, a general relationship
seems elusive. For example, random peak movement
might correspond to erratic fluctuation in climate and
other ecological variables.

Selectively constrained movement

A special case of the model just considered is the
situation in which the movement of the optimum is
constrained by the same forces that influence selection
within populations. This prospect seems especially
likely for suites of characters governed by biomech-
anical laws. A model that captures this feature is
one in which peak movement is specified by a mat-
rix that resembles the matrix characterizing selection
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Figure 7. Models for the movement of the optimum of an adaptive landscape for two characters under stabilizing selection. (a) Random,
stochastic movement of the optimum. (b) Constant rate and direction of movement of the optimum, after a period of relative stasis. (c) Episodic

movement of the optimum separated by periods of relative stasis. (d) Divergence in optima, corresponding to ecological speciation.

acting within populations (14). The situation is ana-
logous to the drift landscape in which a matrix that
is proportional to the G-matrix governs the drift of
the mean. One possibility is that a matrix that is in-
versely proportional to the y-matrix (which specifies
the curvature and orientation of the adaptive land-
scape) governs movement of the optimum. Under this
model the optimum undergoes random movement, but
that movement is selectively constrained. A prediction
of this model is that the pattern of character means
will be aligned with the axes of the adaptive landscape
(Figure 8). If the y-matrix is the same across popula-
tions, the variance—covariance matrix for the means of
replicate, descendant populations will be proportional
to the inverse of the y-matrix. That among-population
variation will, however, decay as an exponential func-
tion of time. The weaker the stabilizing selection, the
more variation will be retained at any given time. Con-
versely, strong stabilizing selection will hasten the loss
of among- population variation (14).

Constant rate and direction of movement

The optimum might move in characteristic direction at
a constant rate (Figure 7(b))(Charlesworth, 1993a,b;

Lynch & Lande, 1993; Lande & Shannon, 1996).
This kind of deterministic model might correspond
to a constant change in climate, which translates
into a steady change in selection pressure. Models
of this kind can account for long-sustained evolution-
ary trends that happen in parallel in multiple lineages.
Kurtén (1959), for example, discusses such a pattern
in the evolution of mammalian body size during the
Pleistocene. On a shorter timescale, this model pre-
dicts rapid, evolutionary response of the kind that
has been documented in response to anthropogenic
changes in the environment (Thompson, 1998; Hendry
& Kinnison, 1999; Reznick & Ghalambor, 2001).
Depending on the rapidity of change in selection pres-
sures, these rapid responses might also correspond to
the following model.

Episodic movement

The optimum might remain relatively constant and
then rapidly move to a new position (Figure 7(c)).
In Gould and Eldredge’s (1977) terminology, peak
stasis might be punctuated by periods of rapid move-
ment. Unlike Gould and Eldredge’s model of punctu-
ated equilibrium, however, we are not supposing that
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Figure 8. The relationship between the individual selection surface
(a) and the adaptive landscape (c). The relationship between these
two surfaces can be visualized by averaging the individual selection
surface (a) over the phenotypic distribution (solid curve in middle
panel) in the interval between the two vertical dashed lines. That
averaging produces the solid dot shown in the lower panel. Sliding
the phenotypic distribution to the right, and repeating the averaging
process at each new position, produces the curve shown in the lower
panel, the adaptive landscape.

speciation accompanies periods of peak movement.
Our model addresses change within lineages rather
than cladogenesis. Episodic movement of the peak
might correspond to sudden invasion by a competing
species or predator, geological or climatic cataclysm
(volcanic eruption, meteor impact, etc.), colonization
of a new environment, or anthropogenic change in the
environment.

Hansen and Martins (1996) have modeled changes
in phenotypic mean that can be related to this kind of
within-lineage, episodic peak movement. The para-
meters in their model, however, are not transparent
functions of underlying processes of selection, drift
and inheritance. Nevertheless, their model predicts
that variation among the means of descendant popula-
tions is unlikely to be normally distributed. That result
may provide a method that could be used to discrim-
inate between continuous and episodic change in the
adaptive landscape. Hansen (1997) models the vari-
ation that is expected among species when a slightly

varying optimum moves to a new position. He also
provides a worked example showing how phylogeny
can be incorporated into the estimation of the two peak
positions.

Population extinction is a possible response to
movement of the adaptive peak. One way to assess the
risk of extinction is to calculate the total genetic load
on a population, which is the expected loss in average
fitness due to genetic and other factors. Under weak
stabilizing selection, the impact of peak movement on
genetic load increases as the square of the distance
that the peak moves (Lande & Shannon, 1996), (15).
Thus, large peak movements are especially likely to
cause population extinction. Likewise, rapid move-
ment of the peak may have a profound effect on
population persistence. Populations are limited in their
rate of evolutionary response to changing conditions
by the patterns of genetic variation and covariation
for characters under selection. Rapid peak movements
may exceed the maximum rate of possible evolution
and lead to population extinction (Lynch & Lande,
1993). Population and species differences in genetic
architecture will lead to varying capacities to respond
to changing landscapes. This process may contribute
to macroevolutionary patterns of differential success
that some authors have labeled species level selection
(Vrba, 1983).

From models for the evolution of the optimum to tests
for the causes of evolutionary pattern

A current empirical challenge is to use the models just
described to test for alternative causes of evolution-
ary pattern. From this standpoint, the most successful
models are those that relate trait variance/covariance
among related taxa to measurable, microevolution-
ary processes such as selection or inheritance. Thus,
the drift model predicts that among species covari-
ance will be proportional to the G-matrix, whereas
the model of selectively constrained peak movement
predicts proportionality to the inverse of the y-matrix.

Although we have some useful models, much the-
oretical work remains to be done. A major challenge
on the theoretical side is to produce models that yield
the most common kinds of patterns in species means.
One such common pattern is a correlation in the spe-
cies means for two variables (e.g., brain weight and
body weight). A model of bivariate drift can produce
such a pattern (6), but the predicted correlation un-
der that model is likely to be smaller than the one
that is commonly observed (Lande, 1979). Models of



flat, tilted landscapes predict patterns of covariance
that continually increase through time (7, 8). Models
of curved landscapes in which the peak moves ran-
domly about a fixed point predict a steady decay in
the covariance of species means (10, 13, 14). None of
these models predict a stable pattern of interspecific
covariation. In other words, we have an infrastruc-
ture for a bridge from microevolutionary process to
macroevolutionary pattern, but the construction of the
bridge is far from complete. One promising direction
might be to build models of peak movement that in-
clude ridges, and other channels of movement, that
are capable of yielding correlations in species means.
Gavrilets (1997) makes a similar point in discussing
Wrightian landscapes for genotypic space.

Another way to test the models is to use their pre-
dictions concerning the decay in covariance between
species as a function of evolutionary distance. Some
models predict linear decay, while others predict expo-
nential decay (Hansen & Martins, 1996). Additional
theoretical development may facilitate tests of both
kinds. For example, if the models can be arranged in a
hierarchy so that each successive model differs from
a simpler one by a single parameter, then it should
be possible to use likelihood ratios to test and reject
models in sequence. That goal has not been achieved
but it is not far off (Hansen & Martins, 1996).

Empirical characterization of the adaptive
landscape

Overview

Key features of the adaptive landscape can be estim-
ated by analyzing variation within populations. In the
next sections we describe why such analyses are best
pursued as a multivariate problem. We review the
connection between a surface that can be estimated
from within-population data and the adaptive land-
scape. Using this connection, we stress the importance
of estimating both the curvature and the slope of the
adaptive landscape. The parameters that describe slope
and curvature are also measures of selection intensity
in equations for evolutionary change.

The one character case

The analysis of selection on a single character is de-
ceptively simple. Change in the mean can be used as
an indication of directional selection, and change in
the variance can be used as an indication of stabilizing
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or disruptive selection. The problem with such ana-
lysis is that the observed shift in the mean may be a
consequence of selection on the character in question
(direct selection) or it may be a consequence of selec-
tion on correlated characters (indirect selection), (16).
Likewise, the observed change in variance (and covari-
ance) may be due to direct or indirect selection (17).
Even directional selection on the character in question
can cause its variance to contract. For all these reasons,
the measurement of selection is a multivariate problem
(Lande & Arnold, 1983).

Multivariate selection

The best data for sorting out direct and indirect ef-
fects of selection are longitudinal data in which we
know the values for a set of phenotypic traits for each
individual in a large sample and each individual’s fit-
ness. With such data we can use multivariate statistical
methods to characterize the surface that relates indi-
vidual fitness to individual phenotypic values (Lande
& Arnold, 1983). This individual selection surface is
not the same as the adaptive landscape, but it is closely
related to it (Kirkpatrick, 1982; Phillips & Arnold,
1989; Whitlock, 1995; Schluter, 2000, pp. 85-88).
Under certain assumptions we can use our character-
ization of the individual selection surface to estimate
key features of the adaptive landscape. In particular,
we can use this correspondence between surfaces to
estimate the slope and curvature of the adaptive land-
scape in the vicinity of the population’s phenotypic
mean.

What is the individual selection surface and how
is it related to the adaptive landscape? The individual
selection surface is a surface of expected fitness for
an individual as a function of the values of its phen-
otypic characters (18). The relationship between this
selection surface and the adaptive landscape is simple
if the characters follow a multivariate normal dis-
tribution. Under this assumption, the slope of the
adaptive landscape is equal to the average slope of the
individual selection surface, weighted by the trait dis-
tribution (19). The same kind of equivalency holds for
the curvatures of the two surfaces (Lande & Arnold,
1983), (20). Thus, if the individual selection surface is
wavy, so that slope and curvature vary with position in
trait space, the adaptive landscape will have the same
average slope and curvature (weighted by the phen-
otypic distribution), but will be smoother (Figure 8).
These equivalencies can be used to estimate the de-
scriptive parameters of the adaptive landscape from
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data on individual fitness and trait values. The first step
is to characterize the individual selection surface.

Multiple regression can be used to characterize the
individual selection surface (Lande & Arnold, 1983;
Phillips & Arnold, 1989; Brodie, Moore & Janzen,
1995; Janzen & Stern, 1998). In such an analysis a
model is fitted so that individual fitness is predicted
from the values of the various characters that are
measured. Although such analyses are common in the
literature, investigators usually fit only a linear re-
gression. The coefficients that are estimated by linear
regression are the average slopes of the surface (81, 82,
etc.), which are equivalent to the slope of the adaptive
landscape if the traits are multivariate normal. To fit
a curvilinear regression — so that the curvature and
orientation of the surface can be estimated, as well
as its slope — one needs to estimate the coefficients
for squared and product variables (e.g., Z%, z122). The
coefficients for these curvilinear terms (e.g., ¥11, Y12)
are the elements in the y-matrix (4). Such a curvilinear
regression is known as a quadratic surface (18). Ex-
amples of such quadratic surfaces are given in Arnold
(1988) and Brodie (1992).

An unfortunate trend in the empirical literature has
been to estimate B coefficients and ignore y coeffi-
cients. The trend is unfortunate because y plays an
even larger role in evolutionary theory than does B.
The large role of y can be appreciated by scanning the
Appendix. Because y describes the curvature of the
adaptive landscape, it occurs in many equations that
describe the pattern of dispersion of species means,
and how that pattern changes through time.

In addition to being descriptors of the adaptive
landscape, the B and y coefficients have another
significance. The parameters corresponding to these
coefficients are the measures of selection intensity
that appear in equations for the evolutionary change
in the phenotypic mean and the G-matrix (Lande &
Arnold, 1983; Arnold, 1992). Thus, the quadratic re-
gression just described is a way to estimate parameters
of selection that play key roles in evolutionary theory.

If the individual selection surface is the primary
object of interest, rather than the adaptive landscape,
other methods can be used to describe its features. A
limitation of the quadratic regression approach is that
it may not accurately represent the individual selection
surface, especially if the surface is highly irregular.
Projection pursuit regression, a variety of polynomial
regression, can be used in such cases (Schluter, 1988;
Schluter & Nychka, 1994). A further advantage of
these methods is that they do not rest on an assump-

tion of normal trait distributions. Although accuracy of
representation and escape from normality are gained
with projection pursuit regression, a price is paid. The
method does not provide estimates of the parameters
B and y. Quadratic regression can be used to estimate
B and y, even when the individual selection surface is
highly irregular. Thus, when the adaptive landscape, as
well as the individual selection surface, is of interest,
quadratic regression and projection pursuit regression
should be viewed as complementary forms of data
analysis.

The analyses just described give a picture of the ad-
aptive landscape only in the immediate vicinity of the
mean phenotype in the population. Close to the trait
mean we can estimate the slope and curvature of the
adaptive landscape. Further away from the mean (e.g.,
more than a phenotypic standard deviation away), we
are much less certain about the shape of the land-
scape. Three other methods, especially experimental
manipulation, can help ameliorate this limitation.

Three other approaches yield information about the
adaptive landscape and its history: transplant experi-
ments, experimental manipulation of phenotypes, and
retrospective selection analysis. In the transplant ap-
proach, a sample of phenotypes from two or more
environments is grown in the foreign as well as the
native environments, and then fitness is assessed in
all individuals (Schluter, 2000). In the most revealing
experiments of this kind, crosses are made between all
pairs of populations so that first and second genera-
tion hybrids can also be grown in all the environments
(Rundle & Whitlock, 2001). Such experiments can de-
termine: (a) whether ecological or genetic mechanisms
are responsible for any fitness reduction that might
occur in hybrids, (b) whether peaks differ in absolute
height, and (c) whether populations show highest fit-
ness in their native environments. The latter result is
consistent with both a rugged landscape (identical for
all populations, but with populations occupying dif-
ferent peaks) and a simple landscape with a history of
peak movements.

Experimental manipulation of phenotypes is usu-
ally used to test the hypothesis of whether selection
might act on a trait, but it can also be used to resolve
landscape features. This approach consists of ablat-
ing, amplifying or otherwise modifying phenotypes
and then assessing fitness in both experimental and
control (unmodified) classes of phenotypes. Because
only particular traits are altered, leaving a complete
background of traits unmodified, this approach can
give compelling evidence of selection (Sinervo et al.,



1992; Svensson & Sinervo, 2000). If combinations of
traits were modified in a factorial design, this approach
(known as response surface analysis in the statistical
literature) could help resolve the shape of the indi-
vidual selection surface. The strength of the approach
is that statistical power can be gained at some dis-
tance from the phenotypic mean (by increasing the
sample size of rare phenotypes). One danger in the
approach is that experimental traits can be so exag-
gerated that interactions with unmodified traits may
lead to misleading or even pathological values for
fitness.

Retrospective analysis of directional selection can
be informative in situations in which peak movement
seems likely. Such an analysis requires an estimate
of the difference in multivariate means between two
sister taxa, at least one estimate of the G-matrix for
the characters in question and the assumption that the
G-matrix has been constant during the period of di-
vergence (Lande, 1979; Turelli, 1988), (21). The net
selection gradient estimated from such data measures
the minimum amount of directional selection on each
character that is required to account for the observed
differentiation, given a particular estimate of G. For
example, if one assumes that the means of sister pop-
ulations are at equilibrium with stabilizing selection
and that the difference in means corresponds to a
difference in optima, then the net selection gradient
estimated for that pair of populations represents the
pattern of directional selection that was experienced
during the divergence of the optima. For examples of
retrospective selection analysis see Price, Grant and
Boag (1984), Schluter (1984), Arnold (1988), Dudley
(1996), and Reznick et al. (1997).

Open empirical issues

Overview

The landscape world-view highlights many import-
ant unresolved empirical issues. Some of these issues
have to do with assumptions about the invariance of
key evolutionary parameters. We will refer to these as
homogeneity issues. Another set of unresolved issues
deals with peak movement and hence with ecological
connections. We characterize these as alignment is-
sues. Lastly, a set of equilibration issues are concerned
with whether the adaptive landscape has an adaptive
peak and how closely that peak is approached by the
trait mean.
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Homogeneity issues

Homogeneity of genetic variances and covariances
across related populations and taxa is a convenient
simplifying assumption that can greatly facilitate the-
oretical work and data analysis. Lande (1976b, 1980b)
argued that the G-matrix might equilibrate under the
opposing forces of mutation-recombination and sta-
bilizing selection. Just because this assumption has
some theoretical justification and is convenient does
not mean that it is correct. A number of investigat-
ors have adopted this hard-nosed, empirical attitude
in comparative studies of G-matrices (Pfrender, 1998;
Arnold & Phillips, 1999; Phillips & Arnold, 1999;
Roff, 2000). One trend emerging in these studies is
that closely related populations often have very sim-
ilar, if not identical G-matrices. Another trend is that
the principal axes of the G-matrix are sometimes con-
served even when the matrices are demonstrably not
identical or proportional. Current directions in em-
pirical studies of G-matrices are to make multiple
comparisons in a phylogenetic context and to model
evolutionary change in those matrices. Another issue
is whether homogeneity holds for some kinds of char-
acters more than for other kinds. Thus, life-history
characters seem the least likely to maintain homo-
geneous G-matrices. These traits experience strong
selection that can fluctuate with nearly any kind of
ecological change. The landscape for major fitness
components, that is, (stage or age specific) viability
and fecundity, is almost purely directional with little
or no curvature to generate a stabilizing influence.
In contrast, traits under stabilizing selection are good
candidates for G-matrix homogeneity.

Homogeneity of phenotypic variances and covari-
ances is also an important, largely unresolved issue.
The phenotypic variances and covariances for a set of
characters can be assembled into a so-called P-matrix
and that entire matrix can be subjected to statistical
analysis and tests. Homogeneity of P-matrices is fur-
ther removed from central issues than homogeneity
of the G-matrix, and for a number of reasons P-
matrix structure may not be reflective of G-matrix
structure (Willis, Coyne & Kirkpatrick, 1991), but
it is still an important issue. A finding of homo-
geneous P-matrices suggests that G-matrices may be
homogeneous and may indicate that the adaptive land-
scape has long maintained the same curvature (Arnold,
1992). The inferences are indirect, but this disadvant-
age can be offset by the fact that estimates can be
obtained for more populations and taxa than in a study



22

of G-matrices (Steppan, 1997a,b; Badyaev & Hill,
2000).

Homogeneity of the adaptive landscape among re-
lated populations and taxa is a crucial but largely
unexplored issue. Our discussion in this article, for ex-
ample, has been vastly simplified by assuming that the
adaptive landscape commonly shifts its peak position
while retaining a characteristic curvature and orient-
ation. Is this assumption valid? Comparative studies
that test the proposition of landscape homogeneity are
difficult to conduct because extensive data are required
for each population to estimate individual selection
surfaces. Despite this difficulty, the statistical tools for
landscape comparison are already in place. Perhaps
the most powerful framework for such comparisons
is Flury’s (1988) hierarchy of tests for comparing the
eigenvalues and eigenvectors of variance-covariance
matrices. Flury’s approach could be applied to y-
matrices. A second challenge is to conduct the com-
parisons and tests in a phylogenetic framework. So far
this goal is also elusive. Nevertheless, the reconstruc-
tion of the evolution of y on a phylogeny might be the
best way to test the central assumptions of models for
peak movement.

Alignment issues

Schluter (1996) has proposed that evolution might of-
ten occur along genetic lines of least resistance. The
latter phrase refers to the principal axis of the G-
matrix, the direction in character space for which there
is the most additive genetic variance or gmax . The basis
for Schluter’s argument can be seen in Figure 5. When
a population approaches a stationary adaptive peak,
it’s evolutionary trajectory will often, but not always
(note the trajectory in the lower right), be aligned
with gmax. Schluter (1996, 2000) describes tests for
alignment of the direction of evolution with gmax and
applies them to several case studies.

Evolution might also occur along selective lines of
least resistance. Consider the model of selectively con-
strained peak movement in which the pattern of peak
shifts mirrors the pattern of selection within popula-
tions (14). In such a model the population trajectory,
as the population chases its moving peak, will tend
to be aligned with the principal axes of the adaptive
landscape. Evolution will tend to occur along select-
ive lines of least resistance. To visualize the model,
imagine an adaptive landscape that is Gaussian in all
dimensions. We can describe the width of this Gaus-
sian hill with a parameter called w, which is analogous

to the variance of a bell curve (14). A large w means
that the hill is wide and flat, a small w means that the
hill is narrow and sharply curved in a particular trait
dimension. Thus, trait dimensions with the largest o
(smallest ) correspond to directions of selective least
resistance; the peak is most prone to move in those
directions. To find the line of selective least resistance,
we need to determine the principal components of the
w-matrix (or the negative inverse of the y-matrix). The
largest principal component, corresponding to the dir-
ection with the greatest width of the hill, may be called
®max, and represents the line of selective least resist-
ance. The appropriate test of this hypothesis would
be to estimate wmax (preferably from multiple popu-
lations) and compare that direction with a sample of
evolutionary trajectories. Phillips and Arnold (1989)
describe how to estimate the principal components of
a selection surface.

It may be difficult to distinguish between evolution
along genetic lines of least resistance and evolution
along selective lines of least resistance. The discrim-
ination is made difficult because a long-term, stable
pattern of stabilizing selection will tend to bring the
G-matrix into alignment with the adaptive landscape
(Lande, 1980c; Cheverud, 1984; Arnold, 1992). Thus,
a logical first step in analysis would be to test for
correspondence between gmax and wmax. If these two
directions coincide then the two hypotheses regarding
alignment with evolutionary trajectories cannot be dis-
tinguished. If gmax and @wmax are appreciably different,
then it might be possible to distinguish between the
two hypotheses.

Equilibration issues

If population means are close to their adaptive peaks,
then the dispersion of means in character space could
be construed as the multivariate pattern of optima.
Furthermore, the evolution of the multivariate mean
could be equated with peak movement. These equival-
encies are most likely to be true for characters with
abundant genetic variance on landscapes with strong
curvature about a single peak (strong stabilizing se-
lection), a combination of attributes that strongly pulls
the mean phenotype towards the peak (Hansen & Mar-
tins, 1996). Hansen (1997) develops an approach that
makes a weaker assumption about equilibration. In
Hansen’s model the actual optima of related species
deviate from a primary optimum that is an unchanging
characteristic of the clade as a whole. Deviations of
actual optima from the primary optimum are caused by



small background perturbations in inheritance and se-
lection, as well as by the major ecological features that
determine the primary optimum. In this view, much
interspecific variation could arise from background
factors. One need not assume that all interspecific
variation represents variation in peak position.

Using individual selection surfaces, it is possible
to estimate the position of the optimum, if it is relat-
ively close to the character mean (Phillips & Arnold,
1989) and so test the hypothesis of equilibrium. Un-
fortunately, such tests for the location of the optimum
are seldom conducted.

The shape of the landscape is an issue that also
bears on the assumption of equilibration. Although
a single adaptive peak has been assumed in this art-
icle, and is often revealed in empirical studies, the
adaptive landscape could take many other forms. The
possibility of an adaptive ridge should be seriously en-
tertained. Such ridges could produce stable patterns of
trait covariance (Emerson & Arnold, 1989; Schluter,
2000). On such an adaptive landscape, selection tends
to drive the trait mean phenotype towards the ridge,
but the population can move along a level ridge by
drift.

Conceptual aspects of the adaptive landscape

Local versus global visions of the
adaptive landscape

The adaptive landscape can be viewed from either
a local or a global perspective. Although the global
view dominates popular discussions, the local view is
more in line with both theoretical and empirical de-
velopments. By ‘local’ we mean that the landscape
for a particular species is viewed only in the imme-
diate vicinity of its phenotypic mean. A global view
takes in a larger expanse of the adaptive landscape
that includes multiple species, perhaps an entire ra-
diation. Even though it may be useful in particular
situations, the global view is seductive and fraught
with dangers. Global views often depict a landscape
with multiple adaptive peaks, and sometimes a popula-
tion is shown as it negotiates this complex topography
(e.g., Dawkins, 1996, Figure 5.30; Schluter, 2000,
Figure 4.2). This perspective is seductive because it
purports to show long range as well as short-term pos-
sibilities for adaptive evolution. The global view may
be accurate when it describes landscapes that reflect
concrete environmental factors, such as the distribu-
tions of resources. Thus, in situations in which the
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landscape reflects, say, seed size and hardness — and
hence the individual selection surface of phenotypes
exploiting those seeds — it may portray virtually the
entire phenotypic space available to an island com-
munity of finches and so may be useful for forecasting
evolutionary possibilities.

Even here we should not forget the distinction
between the individual selection surface and the ad-
aptive landscape. Because of the smoothing effect of
the trait distribution, the adaptive landscape can be
smooth, even if the individual selection function is
rugged and has multiple peaks (Figure 8). For many
kinds of phenotypic characters, however, the land-
scape beyond the limits of current variation in the pop-
ulation is purely imaginary. For such characters it may
be gratuitous to assume that distant peaks exist. The
global view will often — perhaps always — be plagued
with other serious limitations. The landscape for par-
ticular species is bound to change through time, for
example. If we use a single landscape to predict the dy-
namics of multiple species, we cannot account for the
possibility that different species may simultaneously
experience different changes in elevation at the same
point in trait space. By forcing all populations and
species to experience the same fitness at equivalent
points in trait-space, the global view can seriously dis-
tort reality. In contrast, the local perspective does not
assume that all species reside on the same landscape.
This perspective is also more in line with mathematical
characterizations of the adaptive landscape, which are
typically restricted to features near a particular phen-
otypic mean. We can visualize multiple species, while
retaining an accurate view of each, by superimposing
their adaptive landscapes (e.g., Schluter, 2000, Fig-
ure 5.5). The distinction between the two perspectives
can be clearly seen in the case of an adaptive radi-
ation in which descendant species occupy different
adaptive peaks. In the global view the landscape is
necessarily complex with mutliple peaks (Figure 9(c)).
In the local view each species might have continuously
experienced a very simple local topography as it fol-
lowed a moving peak. At a particular point in time,
the superimposed landscapes for the different species
would depict the sites of the different peaks in trait
space (Figure 9(b)). In other words, the fact that a
clade shows diverse phenotypes (Figure 9a) does not
force us to adopt the global perspective.

Trait interactions provide another reason to view
the landscape as a local phenomenon rather than as an
ecological reality that exists separately from the organ-
ism and its population. By trait interactions we mean
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Figure 9. Local and global views of the adaptive landscape. (a)
Four superimposed phenotypic distributions represent four different
species. (b) In the local view of the adaptive landscape, the mean of
each phenotypic distribution is situated at the optimum of a different
adaptive landscape. The portions of these four landscapes in the vi-
cinity of the their optima are superimposed in the middle panel. (c)
In the global view of the adaptive landscape, the phenotypic means
are situated on different peaks of a single adaptive landscape.

situations in which fitness with respect to one trait de-
pends upon the values of another trait. Such situations
must be extremely common. They arise, for example,
when traits function together in locomotion, foraging,
sexual encounter, and all other fitness-related activ-
ities. Thus, the effect that a certain number of tail
vertebrae has on crawling performance in snakes de-
pends on how many body vertebrae an individual has.
If a snake has more tail vertebrae, the optimal number
of body vertebrae is higher than for a snake with fewer
tail vertebrae (Arnold & Bennett, 1988). Put another
way, snakes with the best crawling performance have
a higher positive correlation in their vertebral numbers
than the population at large. Such trait interactions af-
fect the configuration and orientation of the individual
selection surface and hence of the adaptive landscape.
These aspects of the internal environment are encap-
sulated in the off-diagonal elements of the y-matrix.
In the snake example, the effect of the interaction is
to produce a positively-oriented ridge in the surface
that relates crawling speed to vertebral numbers. The

point is that the adaptive landscape is affected by trait
interactions as well as by the ecological setting.

Critiques of the landscape idea

A variety of criticisms have been leveled at the ad-
aptive landscape in the 70 years since in inception.
Of these criticisms, the most fundamental is ques-
tion of whether the landscape actually exists. The
logical underpinnings of the landscape have been
most thoroughly explored in the field of population
genetics using one and two locus models. The earli-
est indications of problems were discovered in this
arena by the originator of the concept, Sewall Wright.
The main issue under discussion is whether evolution
maximizes mean population fitness, that is, whether
the population inevitably moves uphill on Wright’s
landscape and achieves a fitness maximum at equi-
librium. Wright (1955, 1969) found that mean fitness
was not maximized under certain forms of frequency-
dependent selection, but in certain of these cases,
another quantity could be defined that was maxim-
ized. Lewontin (1958) and Curtsinger (1984a, 1984b)
searched for a quantity that would be maximized in
a variety of problematic cases. They could show that
such a quantity exists in some but not all cases. Ewens
(1979) argued that fitness maximization depends on
an assumption of linkage equilibrium and so is not
a general evolutionary principle. This objection can
be answered by assuming only weak selection and
linkage (Kimura, 1965; Wright, 1969). From these
analyses one can conclude that although Wright’s
landscape is a useful concept in many situations, there
are circumstances in which it’s fundamental principles
(increase in and maximization of mean fitness) do not
apply. An alternative function may exist that is inev-
itably maximized during evolution, but so far no one
has been able to find it.

The issue of fitness maximization has also been
explored in the arena of Simpson-Lande landscapes.
The maximization principle holds if the fitnesses of
phenotypes are constant in models with single or mul-
tiple characters (Lande, 1976a, 1979). If selection
is frequency-dependent, average fitness may not al-
ways increase in the population and the phenotypic
mean may reach an equilibrium downslope from an
optimum (Lande, 1976a, 1980a, 1981). In such cases,
average fitness may not follow simple gradient dynam-
ics, but it may still be useful to depict evolution on
an adaptive landscape, for example, to visualize the
effects of genetic covariance (Lande, 1980b).



Provine (1986) has criticized both Wright and
Simpson—Lande landscapes, but on different grounds.
Provine’s main complaint with Wright’s landscape is
that it is often confused with an individual selection
surface in which the axes are particular genotypic
combinations (Provine, 1986, pp. 310-311). As Prov-
ine points out, such an individual selection surface
is not a continuous function and so it cannot be the
surface portrayed in Wright’s (1932) diagrams. With
regard to Wright’s landscape (mean fitness as a func-
tion of gene frequency), Provine has no substantive
criticism. Turning to the Simpson-Lande landscape,
Provine’s main objection is that the evolutionary dy-
namics of the phenotypic mean are not formally re-
lated to an underlying theory of change in gene fre-
quencies. A tractable theory for phenotypic evolution
explicitly rooted in equations for genetic change at
multiple loci is indeed a goal that has eluded theoreti-
cians. The considerable progress that has been made
in developing a useful evolutionary theory of phen-
otypes (Lande, 1988) was achieved by purposefully
disconnecting that theory from population genetics
and hence from its failure to achieve a polygenic ex-
tension. Whether one views this disconnection as an
Achilles’ heal or an enabling tactic, depends on one’s
outlook and priorities.

The Wrightian landscape is also at the center of
a controversy over Wright’s shifting balance theory,
but the issues of contention loose their force when
applied to the Simpson-Lande landscape. The main
issues of contention is whether populations become
trapped on a suboptimal peaks and then overcome this
condition through the joint agency of drift and in-
terdemic selection (Whitlock & Phillips, 2000). The
trapped situation arises on Wrightian landscapes be-
cause epistasis in fitness makes the landscape rugged
(Whitlock et al., 1995). It is by no means clear that
epistasis in fitness will play a comparable role on
the Simpson—Lande landscape. In a highly polygenic
world, the landscape of phenotypic traits is likely to
be smooth. The prospect of becoming trapped is also
exacerbated by the assumption that the landscape is
constant through time. If the landscape ripples as it’s
peak(s) move about, the population mean may work
it’s way to the highest peak, even in the absence of
genetic drift and interdemic selection.

Gould (1997) is dismayed by Dawkin’s (1996)
Mount Improbable—a verbal portrayal of the
Simpson—Lande landscape — because of what it leaves
out. Gould prefers Lewontin’s metaphor of an envir-
onmental trampoline; “since organisms help to create
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their own environment, adaptive peaks are built by in-
teraction and undergo complex shifts as populations
move in morphospace”. Gould is disappointed because
Dawkin’s and Simpson’s landscapes leave out interac-
tion between the organism and its environment, levels
of selection, and other complexities that add richness
to the discipline of evolutionary biology. Likewise,
Eldredge and Cracraft (1980) and Eldredge (1999) ob-
ject to the landscape concept because it leaves out
selection at and above the level of species. None of
these objections challenge the reality that we must
approach the modeling of evolutionary processes in
deliberate steps. The important point overlooked by all
of the critiques just cited, as well as Dawkins (1996),
is that the landscape concept is more than a metaphor.
The landscape is a portrayal of a set of equations, not
a bald invention. Those equations represent a growing
set of models that capture an increasingly wider range
of evolutionary possibilities. We may wish for mod-
els (and metaphors) that capture all possibilities now,
but in the meantime the most tangible way to progress
conceptually is to test and extend the models that we
have.

What makes the adaptive landscape stable?

Under the landscape view of macroevolution the sta-
bility of the adaptive landscape seems an inescapable
fact. The Bauplans that are often characteristic of
genera and higher taxa can be understood as manifest-
ations of a stable landscape. The cause of long-term
stability of the landscape remains, however, an incom-
pletely solved problem. Williams (1992) refers to it as
a ‘desperation hypothesis’. The problem of stability
is lessened if we remember that the adaptive land-
scape is not just an environmental phenomenon. To
say that ‘the landscape is stable’ is not to say that ‘the
environment is stable’. Organisms interact with their
environment and some kinds of interactions can pro-
duce stability. Habitat selection (Partridge, 1978), for
example, is a powerful behavioral mechanism than can
compensate for environmental change and hence pro-
mote landscape stability. Trait interaction is another
potential cause of stability. Traits that work together
produce ridges, saddles and other topographic features
of the adaptive landscape. It seems plausible that such
features, arising from trait interactions, lend stabil-
ity to the landscape. Nevertheless, landscape stability
is an issue that needs more theoretical and empirical
attention.
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The theory of G-matrix evolution

The adaptive landscape provides the theoretical basis
for a connection between microevolution and macroe-
volution, but to understand fully the flux of the land-
scape and the evolutionary response of a population to
a changing landscape, we need to understand the ge-
netic underpinnings of the multivariate phenotype. As
noted above, important aspects of the genetics of the
multivariate phenotype can be described statistically
using the G-matrix. While most applications of the G-
matrix assume that it remains relatively constant over
evolutionary time, such an assumption may not always
be valid. Unfortunately, the evolutionary dynamics of
the G-matrix are not well understood. Despite more
than two decades of effort, a dynamic analytical the-
ory for the evolution of the G-matrix has not been
produced, because the mathematical challenges have
so far proven insurmountable. The problem has re-
mained intractable because G-matrix stability depends
on numerous factors, such as the number of loci affect-
ing traits, the distribution of allelic effects at the loci,
and the number of alleles per locus (Barton & Turelli,
1987; Turelli, 1988). One conclusion from existing
models of the G-matrix is that analytical theory cannot
guarantee G-matrix stability (Shaw et al., 1995), but
the problem is so complex that existing theory can-
not adequately describe the dynamics of the G-matrix
over relevant periods of evolutionary time. Taken to-
gether, empirical and theoretical results indicate that
the G-matrix may or may not be stable over multiple
generations, leaving the question of G-matrix stability
an unresolved issue. Future theoretical work involving
both simulations and analytical models, coupled with
careful empirical studies, may shed additional light on
this important topic.

Summary

Is the ‘modern synthesis’ incomplete? Eldredge and
Cracraft (1980) argue that microevolutionary pro-
cesses cannot logically be extrapolated to explain
macroevolutionary pattern. This argument seems to
evaporate with the demonstration that among-taxa
patterns of trait covariance can be predicted from
models of microevolutionary process. Furthermore,
the predictions can be compared against null models
on a phylogeny. So long as that phylogeny includes
higher taxa (e.g., genera) as well as populations and
species, the extrapolation seems logically complete.

Turning to the other main complaint — that important
pattern-producing processes operate above the level of
populations — accommodation within the framework
of adaptive landscapes seems possible. In Simpson’s
(1944) visualization of adaptive zones, for example,
lineage-specific extinction is diagrammed and linked
to trait values. Continued construction of Simpson’s
bridge, rather than demolition, may be the best path
forward.

Our review exonerates Simpson’s vision of a land-
scape and suggests empirical and conceptual bridges
between the often separate endeavors of studying
micro- and macroevolution. Models of microevolu-
tionary process that make predictions about mac-
roevolutionary pattern provide the bridge between
these endeavors. The key features of microevolution-
ary process include quantitative inheritance (genetic
variances and covariances), effective population size,
and configuration of the adaptive landscape (espe-
cially peak position and local curvature). Analyses
of phenotypic variation within populations can char-
acterize both key features of inheritance and local
features of the landscape. Models that predict pat-
tern from ecological processes are still poorly de-
veloped. In particular, the elusive concept of ecolo-
gical opportunity deserves more theoretical and em-
pirical attention. Thus, although the first generation of
models provides many insights, much remains to be
discovered.
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Appendix

The results that follow depend on a series of assump-
tions (Lande 1976a, 1979). The phenotypic distribu-
tion of traits, p(z), is assumed to be (multivariate)
normal, at least on some scale of measurement. The
distribution of the breeding (additive genetic) values
for the traits is assumed to be (multivariate) nor-
mal. This assumption of normally distributed breeding
values does not necessarily imply that a very large



number of genes affect each trait. The assumption does
require that more than a few genes affect each trait
(so that the central limit theorem applies), and that
no one gene explains the majority of genetic variance.
Equations for the response of the phenotypic mean,
Z, to selection allow any form for the individual fit-
ness function (selection surface), W(z), unless some
special function is mentioned. Simple extrapolation of
the selection response across more than one generation
requires that phenotypic and additive genetic variances
and covariances remain constant.

Matrices and vectors are shown in boldface. All
matrices have n rows and n columns, where n is the
number of traits. All vectors are column vectors with
n elements. The superscript T denotes transpose. The
superscript —1 denotes matrix inverse. For a brief re-
view of matrix operations in the context of multivariate
inheritance and selection see Arnold (1994).

(1) If selection acts on a single character, the
change in the mean of that character, before selection,
from one generation to the next is

Az =GB,

where G is the additive genetic variance of the charac-
ter, and g is the directional selection gradient (Lande,
19764, p. 317). This gradient, the slope of the adaptive
landscape evaluated at the trait mean, is defined as

dlnWw
I
(2) The change in the natural log of average fit-
ness in response to selection is approximately equal
to generalized genetic distance. Because this distance
is equal to or greater than zero, we can conclude that
the effect of selection is to increase average fitness or
leave it unchanged,

AlnW~ AZ' G 'AZ>0

(Lande, 1979, p. 4006).
(3) The change in the multivariate mean, before
selection, from one generation to the next is

AZ = G,

where G is the additive genetic variance—covariance
matrix, and B is a vector of directional selection
gradients,

B1
B2
B=1| .

’

fin
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whose n elements, corresponding to the n characters,
are
_0ln w
T
(Lande, 1979, p. 406).
(4) The curvature of the adaptive landscape in char-

acter dimensions z; and z;, evaluated at the trait mean,
is

vij — BiBj = FErEn
i0Zj

(Lande, 1979, p. 406; Phillips and Arnold, 1989,
p. 1214), where y;; is an element in the y-matrix. In
the two character case, the y-matrix is

_ [ Yir Y12 }

Y= iz vz |’
where y11 and y» describe curvature (negative if
curvature is downward, positive if curvature is up-
ward) in trait dimensions z; and z3, respectively, and
y12 describes the orientation of the surface (positive if
the surface tilts upward, negative if it tilts downward).

(5) The G-matrix can be expressed in terms of its
principal components (eigenvectors) and eigenvalues,

G = MAMT,

where M is an orthogonal matrix whose columns are
the principal components of G, and A is a matrix
with the eigenvalues of G on its diagonal and zeros
elsewhere (Flury, 1988, Chap. 2). Abundant genetic
variation in a particular direction in trait-space (prin-
cipal component) is equivalent to a large eigenvalue
for the corresponding principal component.

(6) For multiple traits, the among-population
variance—covariance matrix for trait means after ¢
generations is

CoV(z] = (—) G,

where N, is effective population size and G is the time
average of G (Lande, 1979, pp. 408-409).
(7) For multiple traits after ¢ generations,

COV|z] = tGCOV[BIG,

where COVI[B] is the among-population variance—
covariance matrix for P, the directional selection
gradient, and

COV[B] =P~ 'sP7!,

where P is the variance—covariance matrix for the
traits before selection, and s is the column vector of
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directional selection differentials (Felsenstein, 1988,
pp- 451-452; Zeng, 1988, p. 370). For a single trait,
the among-population variance in trait mean after ¢
generations is

VAR(Z) = 1(G?/P?)VAR(s),

where G is additive genetic variance, P is phen-
otypic variance before selection and Var(s) is the
among-population variance in the directional selection
differential for the trait.

(8) For multiple traits,

COV|[z] = t[G/N. + GCOV[BIG]

(Hansen & Martins, 1996, p. 1409).
(9) For multiple traits, the restraining force is

G[P-y'|~ -6y,

assuming weak selection (Hansen & Martins, 1996,
p. 1410). Note that if selection is weak, so that 8 ~ 0
and w > P, where ® is a matrix whose elements
describe a Gaussian individual selection surface (ele-
ments of w analogous to variances and covariances),
then

o~ —y!
(Lande, 1979, pp. 406—407). Hansen and Martin
(1996) use W to represent @~ L. In the univariate case,
w? is sometimes used to represent the ‘variance’ of
a Gaussian selection surface (e.g., Lande, 1976), in
which case w? ~ —1/y.

(10) For multiple traits after ¢ generations,

COV[z] = Q()VQ" (),

where

Q1) = exp(tGy)
and

V=-CNey)™!

(Hansen & Martins 1996, p. 1410). For a single trait
after t generations,

Var(Z) = —(2Ney) ! exp(2:Gy).

(11) The expected time until the trait mean shifts
to the second adaptive peak is

T oc (WpWy)*Ne,

where WP represents the height of the original peak
and W, represents the height of the valley between the
two peaks (Lande, 1986, p. 345).

(12) For a single trait, the expected change in the
trait mean is

Az = —Gyd,

where d is the distance of the trait mean from the
optimum (Lande & Shannon, 1996, p. 435).

(13) For multiple traits in large populations after ¢
generations,

COV[z] = Q()COV[81QT (1),

where COVI[@] is the among-population variance—
covariance matrix for the optima of the adaptive land-
scapes (Hansen & Martins, 1996, p. 1411). For a
single trait after t generations,

Var(z) = Var(9) exp(2tGy),

where Var(6) is the among-population variance in the
optima of the adaptive landscapes.

(14) Let the individual selection surface be a Gaus-
sian surface with optimum 6,

W(z) = exp [—%(z —0) o (2 — 0)] .

Suppose the optimum of the surface moves as a nor-
mally distributed random variable with mean O and a
variance—covariance matrix that is proportional to w.
Then, if selection is weak, so that ~ 0 and @ > P,

COV(0) = ko = —ky~ !,

where k is a constant of proportionality (a scalar).
Then, using (13), the among-population variance—
covariance matrix for trait means after ¢ generations
is

CoV[z] = Q) (kw)Q" (1) ~ Q1) (—ky™HQ" ().
For a single trait after ¢ generations,
Var(z) = (kw)exp(—2tG/w)
~ (—k/y)exp2tGy).
(15) The evolutionary load caused by the deviation

of the trait mean from its optimum after # generations
is

(Y/2E[Z(1) — (DT,

where the second term represents the expected value
of the squared deviation of the trait mean from its op-
timum after ¢ generations (Lande & Shannon, 1996,
p. 435).

(16) The directional selection differential is the
change in trait mean within a generation arising from
directional selection

s = |z* —Z] = PP,



where z* is the trait mean after selection and z is the
trait mean before selection (Lande & Arnold, 1983,
p- 1213). The shift in the mean of trait z; due to
directional selection is

s1=Z7 —21) = PupBi+ PuaBa+ -+ PiubBn.

where Pj1f is the portion of the shift due to selection
on trait z1, P12B2 is the portion of the shift due to
selection on trait zp, and Py, [, is the portion of the
shift due to selection on trait z,,.

(17) The nonlinear selection differential is the
change in trait variance and covariance within a gen-
eration arising from nonlinear selection

C:P*—P+SST:PYP,

where P* is the trait variance—covariance matrix after
selection (Lande & Arnold, 1983, p. 1216). In the case
of two traits under selection, the change in the variance
of trait z; due to nonlinear selection is

Cu = Pl*l—Pu—f-sz
= P{yn +2PuPoayia + Phyn,

where the 512 term corrects for the decrease in vari-
ance arising from directional selection. The P112y11
term describes the change in variance due to nonlinear
selection on trait z1 (Y11 is negative in the case of sta-
bilizing selection and positive in the case of disruptive
selection). The Py Pi2y12 term describes the change
in variance of trait z; due to correlational selection on
traits z and z». The P122y22 term describes the change
in variance of trait z; due to nonlinear selection on trait
22.

(18) The individual selection surface can often be
approximated by a quadratic surface, which in the case
of two traits, is

W) = a+pizi + Paza + Aynizd
+%V22Z§ + v12z122,

where « is a constant, z; and zo are the trait values
for the two traits (standardized so that their means
= 0), B1 and B, are the directional selection gradients
for the two traits, y11 and y», are the nonlinear se-
lection gradients describing stabilizing (or disruptive)
selection, and y17 is the nonlinear selection gradient
describing correlational selection. This quadratic sur-
face can be estimated from data using the quadratic
regression model

w = a+pfiz1 + Paza + syt + syn3
+yviz1z2 + &,
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where w is relative fitness (standardized so that its
mean = 1), « is a constant, and & is an error term
(Lande & Arnold, 1983, p. 1217).

(19) The directional selection gradient is the
slope of the individual selection surface, dW(z)/dz,
weighted by the phenotypic trait distribution before
selection, p(z);

ﬂ=/pwawmdz

0z

(Lande & Arnold, 1983, p. 1213).

(20) The nonlinear selection gradient is the
curvature of the individual selection surface, 32 W (z)/
0%z, weighted by p(z);

92W (z)
14 Z/P(Z)W dz

(Lande & Arnold, 1983, p. 1216).

(21) The net selection gradient corresponding to
the phenotypic divergence of two sister taxa is the
sum of over generations of the directional selection
gradients, B;, that have acted during the period of di-
vergence. If G remains constant during the period of
divergence, the net selection gradient can be estimated
by the formula,

Bret = G [Za — Zb],

where Z, and Z, are the trait means of two sister taxa
(Lande, 1979, p. 407). If G varies during the period
of divergence, the net divergence in means is a func-
tion of the covariance between G and B, COV(Gy, B;),
as well as the time average of G and the sum of B,
(Turelli, 1988). Although Turelli (1988) argued that
COV(Gy, B;) might be large, it is not clear that this is
so. Selection in generation ¢ affects G in generation
t + 1. Thus, we might expect a nonzero COV(Gy4 1,
B:), if B; varies. Nonzero COV(Gy, B;) would depend
on serial autocorrelation in B;. This autocorrelation
obviously depends on how the adaptive landscape var-
ies through time, which is an unresolved empirical
issue.
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